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The author proposes a method for solving nonlinear heat conduction
problems in which the space-time domain is divided into a series of
calculation intervals with respect to time and the coordinate.

In this paper the approximate method of solving
nonlinear problems proposed in [1] is further devel-
oped.

We will consider the solution of the heat conduction
equation for a plate or a multilayer system composed
of plates in the case when the thermophysical proper-
ties depend on temperature. Heat exchange with the
surrounding medium is governed by Newton's law
(boundary condition of the third kind), the ambient
temperature and the heat transfer coefficient may
vary in time according to an arbitrary law. The re-
lations for the thermal conductivities A and specific
heats ¢ are given for an [-layer system in the form

A=k, c=c(), [0 Ly,

A=M(E), c=c (0, [Ly L],
A=x(), c=¢@), [L— L]l (1)

Since the temperature is an unknown function of the
coordinate and time, A and ¢ are certain unknown com-
plex functions of x and 7.

The space-time domain is divided into m time in-
tervals A7t and n layers Ax; on Ax during the interval
AT the thermophysical characteristics take constant
values. After this transformation the solution of the
initial nonlinear problem can be replaced by succes-
sive solutions of linear problems with the same bound-
ary conditions as in the initial problem.

In solving these linear problems the thermophysical
parameters can be chosen as follows. During the in-
terval At the parameters A and ¢ can be represented
by functions of the coordinate only:

A=Al ()

T = Tl‘ + @(Th—l-_ Tj),

c=¢c¢ [tl (x)],

0<cO<Ll. @)

Functional relation (2) is determined, firstly, by
the given temperature dependence of the parameters
(1) and, secondly, by the temperature distribution
with respect to the coordinate

tl (x) [t=‘r]~+9(1:j+.~t/-); 0<6<1.

The values of A and c in the layers are given by

Ao o, x5 %), =0,
Aoy € [%0 %),
}" = }"3s [xa; x4]y

¢ = CS)

............

}"n—l’ Cr—1» [xn—l; xn]:
A Cns %a: Xpaals (2a) -
where
Ay = MG o

c;=C [z (x)] ==, B 4y —x;); 0<8<]

Thus, functions with discontinuities of the first
kind (2a), (2b) characterize the distribution of the
thermal characteristics over the layers. On transi-
tion from the j~th to the (j + 1)-th time interval and
from the i-th to the (i + 1)-th layer the parameters
change discretely. Matching at the boundaries of the
layers is achieved by introducing the condition of
equal temperatures and heat fluxes at the boundaries.
The temperature field at the end of the j-th time in-
terval is the initial condition for the (j + 1)-th interval.
As shown in [1], the point of the space-time domain,
with respect to which the thermophysical parameters
are found, may be selected either at the beginning of
the time interval 7; or at its end 7j4;, at the left x; or
right boundary of tgle layer Xi+i, or at some intermed-
iate value

T, < T ST
Xy < X < Ky

The arbitrary choice of this point determines the ap-
proximate nature of the method of solution for finite
values of At and Ax. From physical considerations it
is obvious that as At and Ax decrease, the expres-
sions for the temperature fields in the linear problems
will approach the solution of the initial nonlinear prob-
lem.

In solving this problem the initial condition may be
taken as the zero condition; this simplification is based
on the proposition that the effect of the initial temper-
ature distribution grows weaker in the course of the
process.

The temperature field in the first time interval is
described by the expression obtained in [2]. In the
second time interval the heat conduction equation and
the boundary conditions for the symmetrical problem
have the form

ati aztz .
=02 )
dt 0x?
T <T] Ty XXXy,
i=1223 .. m (3)

ot x, 17) + E“L [tc (T) - t(xv T)]x:o =03 (3 a)
ox A
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ot (x, 1)

=0 (3b)
ax X=Jcn+1 )
f (8 1) ey = Y 0 (5) Q11 ()
k=0
+ ¥ (100 x
k=0
O D, X)
X ¥, it P ey (—p2 1)
p=1 PR (1o, 1) RN ALY o)
A=A o a=a, 9 (3d)
LK T) = by (Kpuas T (3e)
xi,zat‘l (x[+1» T) — }"i+1,2 al‘i+1 (xi+1’ T) R (3f)
ox ox

As follows from [2], the functions Qg, i (x) are poly-
nomials of degree 2k defined on the interval [Xi3
Xi+1]. If X is represented in the form of a relative co-
ordinate

Ny = (%0 — 0% — %),

the coefficients in Qi j(x) will consist only of com-
plexes of the type

Ry =Ax/hy M, = (A x)/a;

It is more convenient to find the solution of the prob-
lem for a multilayer system with a complex initial
temperature distribution by the method of separation
of variables 3]. First, we find the solution for the
case when the temperature of the medium is given by
a function in the form of the common term of a Mac~
laurin series, the boundary conditions (3a) and (3b)
being replaced, respectively, by

ot {x, 1) T ay [ 10 (0) o —
0x 7\412 k!
— t(x, 1) ‘ = 0; 4)
Axy=0

(% D=t =

o Qe 1 ()T +

= 1% (0) {[171! Qo 1 ()T -

IR

p=1

_Dipp X) 0 )
W9 (o, 1) exXp(—kp B[ - a)
Making the change of variable
19 (0)
t(x, 1) = i ™ U (%, 1), 5)

we obtain an inhomogeneous differential heat condition
equation for the multilayer system with homogeneous
boundary conditions and initial condition 4a). Using
substitution (5), we can write its solution in the form
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Qi

fe—1
F— 1)1 —=t g B

(% T) = £ (0) {%_2 .

Qk*ll‘,i,2 T+ Qk,i,z‘—'

— i i [ D (e %)
(e —1) | 1,9 (po)

p=1

+

Do, 0 o
B (1p1) ]exp[ wo ot — )l +

» Tk-? @, ([J- x)
+ L i Ipr2: .
Zﬂ (£ —2) [ Pﬁg.'ch (Hp,z)

_ ‘(D[‘(P"ﬂ,h %) ] %
P‘gvlq),(l"'p,l)

Xexp[—pl (r—m)l+... +

oy | Qe %) _
+E( g [M’“f‘(p {1y,

@, (P«p,l» x)
p2lz+l o (1y.0)

+ 2 (— 1y

=1

} exp [—p2 , (v — )l +

@, (Mp v %)
Zk_H(P (p,1)

X

X exp ['_ Pvﬁ,ﬂ"‘*ﬁ)—‘}’vf,,ﬁﬂ}' (6)

We obtain the general solution in the second time
interval by superposition of the temperature fields

@

(5, 1) = Y10 (1) Quuse (0) +

k=0
+ Y
I=1

() (0) had @, %)
N\ ‘¢ Bl i \Wp o2 .
T TSI . N
(e—n1 ! ; [ p2 Tl (np,9)
. (Di(l-"p,lv %)
w2 e (1p,0)

+2<—1)kﬂk> ©) 2

k=0

k=l

] exp [— ) o(t — )]+

@; (up,l, x)

2k-‘-1 X

X exp [—Mg,Q(T‘H)‘P«;lTl]' (6a)

The solutions for subsequent time intervals are ob-
tained in the same way as for the second interval. The
expression for the temperature field at 7., <7 < T4
has the form

E (1) Qp, i mer (X) F

k=0

+Ei(—)l§_] i3 ()) v

j=1 i=1

[ O Wpian ) Dillp %)
>< i ’,l+1 A p.i X
;1 [ WL () B0 (R,

t(x )=

X exp [— l‘l%,m-{-l (T - Tm) - p’f;,m (Tm - Tn’;—l) o

T p‘f;‘j+1 (Tj+1 - Tj)] T
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+ 2 (— 1)y 0 (0) Z D, (10,1, %) X
p=1

= po (1)

X exp[— P‘?,,m_{.\ (T - Tm) - Hg,m (Tm - 1"m—l) -

— ey (B — 1) — e — g Tl (7)

Time dependence of the function F.

An analysis of (7) shows that the general expression
for the temperature field can be divided into two parts,
~one of which,

o

V10 Q) ®)

k=0

contains the distribution of the physical parameters
with respect to the coordinate only at the instant of
time considered ("running distribution"), while the
other, which has m terms of the type (for fixed k, [)

10 (0)

= ! E [ @i (pp, j+1 %)

~ B @7 (Mp.it1)
. d’i(l"p,;’v ) %
B (e )

X exp[— P«f,, m1 (T—Tm)— P‘,Q;, m Gy — Tmy) —
—...—Pf”j_*_l('[i_',l—-—‘ﬂj)], (83)

contains the distributions of the parameters with re-
spect to the coordinate for the entire process from
the beginning to the instant considered.

We will consider how the temperature field is af-
fected by the reduction of At and Ax with reference to
the example of a thin plate, where it is possible to
neglect the variation of the physical parameters with
thickness. As ATj tends to zero, the temperature
distributions with respect to the coordinate at times
i Tit will be indistinguishable, as a result of which
the thermophysical parameters in the polynomials
Qk, () and temperature field (8) will be uniquely de-
termined.

The absolute value of the sum of m terms of type
(8a) can be represented graphically by the shaded area
in the figure, where along the axis of abscissas we
have plotted time, denoted by ® (to distinguish it from
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the running time 7, which is fixed in analyzing (8a)),
and along the ordinate axis the quantity Fy, :

PO e R\ _
=gz o [ ( % )
R\ bt
() g

p=1
| ’ r
% exp;{\-f—vg![ Qi1 (T—8p) -+ R2+ 8,1 (01.— 9)) }]} X

X 81— 6,174
R—x

2(—1p €OS Vp ;

A 1= —
o, 1 'V%H_l R

v, ={(2p—1) _’;- ©)

The expression in braces in (9) represents terms of
type (8a) for a thin plate.

Treating the thermal diffusivity as a complex func-
tion of time, we find that as A® — 0 and, correspond-
ingly, as m = 7/A® — =, F 7 tends to the limit

1801

Fy TR e @k [————-Rz :ll X
’ (B—iy aft ()]
[ atmdn
% a' [£(0)] ot Ap,lexp 2 '?____.__ - (9a)
aft(®)] 00 <~ - F R?

In this case the broken line on the graph (see figure) is
transformed into a smooth curve, and the absolute
value of the sum of m terms (8a) is expressed by the
integral

T
S Fi,1d0, (10)
0

i. e., by the area under the curve in the figure.

Thus, the solution of the symmetrical problem for
a thin plate with account for the variable physical
parameters can be written in the form

f = N 0 Q 0 +
k=0

+§ (_I)IZFk'ld®+

0 1 k=l

+ 3 (= 000 [ |
mn

k=0

s

T

[ amdn
0 . 1
T

An analysis shows that the effect of the variable
physical parameters is felt only on a small time in-
terval close to the calculation point ® = 7; at greater
distances from that point the effect of a change in the

X E Ap rexp [—vf,

p=1

.parameters rapidly diminishes—as ® decreases, the

value of Fy,1 asymptotically approaches the axis of
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abscissas (see figure). Therefore, in analyzing the
temperature fields it is possible to use a small time
interval @, 7].

When a'{t) =~ 0 and, consequently, a(t) =~ a, the
integral in (11) tends to zero and (11) coincides with
the general expression for the temperature field in
the linear problem [4].

If the temperature at the boundary is given as a
function t,(a7), then as « — 0 all the terms in (11)
will be infinitesimals, exceptt,(a7)Qq, where Q= 1,
Consequently, the temperature does not vary over the
thickness of the plate and follows the variation of the
temperature at the boundary. This corresponds to
normal physical notions; if the temperature at the
boundary varies slowly (¢ — 0), the temperature field
in the plate will be able to equalize itself.

The basic laws obtained from an investigation of
the symmetrical temperature field in a thin plate are
also preserved in the general case; however, their
analytic expression is much more complicated. Treat-
ing the eigennumbers tp and the functions @ and ¢,
which contain values of the temperature-dependent
thermophysical parameters, as complex functions of
t(®), we represent the solution of the general prob-
lem in form (11), where the following expression can
be given for Fy j:

_ A0 N

o= 9" & de

% @, (8, u, (0), ] y
W (©) ¢ [0, 1, (O)]

u () d ] (12)

X exp [—

Dy 4
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It is more convenient to use the general expression
(7), (12) not for specific calculations (since in the
general case Fi, 7 cannot be expressed in explicit
form), but for analyzing the laws of thermal processes
in multilayer. systems: the effect of the temperature
dependence of the parameters, the law of variation of
the ambient temperature, the relative distribution of
the layers of the multilayer system, etc.

The general solution can also be used for simpli-
fied calculations, when the temperature field is de-
termined from the part of the solution characterized
by a running distribution of the physical parameters
with respect to the coordinate; the other part, which
takes into account the effect of the previous variation
of the thermal properties, can serve to estimate the
error of the approximate calculations.
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